Abstract
Two HMM-based threshold models are suggested for recognition and incremental learning of scenario-oriented human behavior patterns. One is the expected behavior threshold model to discriminate if a monitored behavior pattern is normal or not. The other model is the registered behavior threshold model to detect whether such behavior pattern is already learned. If a behavior patten is detected as a new one, an HMM is generated to represent the pattern, and then the HMM is used to update behavior clusters by hierarchical clustering process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.