Abstract

This study explores the effects of different perceptual and cognitive information processing stages on mental workload by assessing multimodal indicators of mental workload such as the NASA-TLX, task performance, ERPs and eye movements. Repeated measures ANOVA of the data showed that among ERP indicators, P1, N1 and N2 amplitudes were sensitive to perceptual load (P-load), P3 amplitude was sensitive to P-load only in the prefrontal region during high cognitive load (C-load) states, and P3 amplitude in the occipital and parietal regions was sensitive to C-load. Among the eye movement indicators, blink frequency was sensitive to P-load in all C-load states, but to C-load in only low P-load states; pupil diameter and blink duration were sensitive to both P-load and C-load. Based on the above indicators, the k-nearest neighbours (KNN) algorithm was used to propose a classification method for the four different mental workload states with an accuracy of 97.89%. Practitioner summary: Based on the results of this study, it is possible to implement the monitoring of mental workload states and optimise brain task allocation in operations involving high mental workload, such as human-computer interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.