Abstract

Aero-engine blades are an integral part of the aero-engine, and the integrity of these blades affects the flight performance and safety performance of an aircraft. The traditional manual detection method is time-consuming, labor-intensive, and inefficient. Hence, it is particularly important to use intelligent detection methods to detect and identify damage. In order to quickly and accurately identify the damage of the aero-engine blades, the present study proposes a network based on the Improved Cascade Mask R-CNN network-to establish the damage related to the aero-engine blades and detection models. The model can identify the damage type and locate and segment the area of damage. Furthermore, the accuracy rate can reach up to 98.81%, the Bbox-mAP is 78.7%, and the Segm-mAP is 77.4%. In comparing the Improved Cascade Mask R-CNN network with the YOLOv4, Cascade R-CNN, Res2Net, and Cascade Mask R-CNN networks, the results revealed that the network used in the present is excellent and effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.