Abstract

A person operating a mobile robot in a remote environment receives realistic visual feedback about the condition of the road on which the robot is moving. The categorization of the road condition is necessary to evaluate the conditions for safe and comfortable driving. For this purpose, the mobile robot should be capable of recognizing and classifying the condition of the road surfaces. This paper proposes a method for recognizing the type of road surfaces on the basis of the friction between the mobile robot and the road surfaces. This friction is estimated by a disturbance observer, and a support vector machine is used to classify the surfaces. The support vector machine identifies the type of the road surface using feature vector, which is determined using the arithmetic average and variance derived from the torque values. Further, these feature vectors are mapped onto a higher dimensional space by using a kernel function. The validity of the proposed method is confirmed by experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.