Abstract

We propose to apply statistical clustering algorithms on a three-dimensional profile of red blood cells (RBCs) obtained through digital holographic microscopy (DHM). We show that two classes of RBCs stored for 14 and 38 days can be effectively classified. Two-dimensional intensity images of these cells are virtually the same. DHM allows for measurement of the RBCs' biconcave profile, resulting in a discriminative dataset. Two statistical clustering algorithms are compared. A model-based clustering approach classifies the pixels of an RBC and recognizes the RBC as either new or old based. The K-means algorithm is applied to the four-dimensional feature vector extracted from the RBC profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.