Abstract

The microstructural development of synthetic rocksalt experimentally deformed at 100–200°C can be dominated either by grain boundary migration recrystallisation or by subgrain rotation recrystallisation, depending on water content. Samples taken from both regimes have been analysed using automated electron backscatter diffraction in order to collect crystallographic orientation and misorientation data. The frequency distribution of boundary misorientations, the boundary hierarchy characteristics and the nature of any crystallographic preferred orientation (CPO) have been used to determine the crystallographic signature of both recrystallisation processes. Dominant subgrain rotation recrystallisation results in many low to medium angle (4–20°) boundaries, a strong CPO and a continuous boundary hierarchy. Dominant grain boundary migration recrystallisation results in few low or medium angle boundaries, and a discrete boundary hierarchy. The causes of these differences and the potential application of crystallographic signatures to the study of naturally deformed rocks are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.