Abstract

Coastal soil microbiomes play a key role in coastal ecosystem functioning and are intensely threatened by land reclamation. However, the impacts of coastal reclamation on soil microbial communities, particularly on their assembly processes, co-occurrence patterns, and the multiple soil functions they support, remain poorly understood. This impedes our capability to comprehensively evaluate the impacts of coastal reclamation on soil microbiomes and to restore coastal ecosystem functions degraded by reclamation. Here, we investigated the temporal dynamics of bacterial and fungal communities, community assembly processes, co-occurrence patterns, and ecosystem multifunctionality along a 53-year chronosequence of paddy soil following reclamation from tidal flats. Reclamation of tidal flats to paddy soils resulted in decreased β-diversity, increased homogeneous selection, and decreased network complexity and robustness of both bacterial and fungal communities, but caused contrasting α-diversity response patterns of them. Reclamation of tidal flats to paddy soils also decreased the multifunctionality of coastal ecosystems, which was largely associated with the fungal network complexity and α-diversity. Collectively, this work demonstrates that coastal reclamation strongly reshaped the soil microbiomes at the level of assembly mechanisms, interaction patterns, and functionality level, and highlights that soil fungal community complexity should be considered as a key factor in restoring coastal ecosystem functions deteriorated by land reclamation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call