Abstract

Sweetpotato (SP, Ipomoea batatas [L.] Lam.) is a globally significant food crop known for its high nutritional and functional values. Although the contents and compositions of bioactive constituents vary among SP varieties, sweetpotato by-products (SPBs), including aerial parts, storage root peels, and wastes generated from starch processing, are considered as excellent sources of polyphenols (e.g., chlorogenic acid, caffeoylquinic acid, and dicaffeoylquinic acid), lutein, functional carbohydrates (e.g., pectin, polysaccharides, and resin glycosides) or proteins (e.g., polyphenol oxidase, β-amylase, and sporamins). This review summarises the health benefits of these ingredients specifically derived from SPBs in vitro and/or in vivo, such as anti-obesity, anti-cancer, antioxidant, cardioprotective, and anti-diabetic, evidencing their potential to regenerate value-added bio-products in the fields of food and nutraceutical. Accordingly, conventional and novel technologies have been developed and sometimes combined for the pretreatment and extraction processes aimed at optimising the recovery efficiency of bioactive ingredients from SPBs while ensuring sustainability. However, so far, advanced extraction technologies have not been extensively applied for recovering bioactive compounds from SPBs except for SP leaves. Furthermore, the incorporation of reclaimed bioactive ingredients from SPBs into foods or other healthcare products remains limited. This review also briefly discusses current challenges faced by the SPB recycling industry while suggesting that more efforts should be made to facilitate the transition from scientific advances to commercialisation for reutilising and valorising SPBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call