Abstract

Cell migration is essential for proper development and the defense against pathogens. Our previous work detailed a pathway of REversion-inducing-Cysteine-rich protein with Kazal motifs (RECK) isoform-mediated invasion in which a shorter RECK protein competes with MMP9 for interaction with the canonical RECK protein on the cell surface. Here we demonstrate that the mechanism through which RECK isoforms affect cell migration is mediated through changes in the levels of post-translational modifications (PTM) of α-tubulin. We show that both the canonical and short RECK isoforms modulate levels of tubulin acetylation and detyrosination. We demonstrate that these changes are sufficient to modulate the rate of fibroblast migration. If these tubulin PTMs are not altered, the effects of the canonical RECK isoform on cell migration are reversed. In defining the molecular pathway linking RECK and tubulin PTMs, we found that MMP9 and integrin activity both act as upstream regulators of tubulin acetylation and detyrosination. Overall, we propose a mechanism in which RECK isoforms on the cell surface have opposing effects on cell migration through MMP9-modulated changes to integrin-extracellular matrix (ECM) interactions that, in turn, affect microtubule PTMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.