Abstract

Free-space optical communication provides rapidly deployable, dynamic communication links that are capable of very high data rates compared with those of radio-frequency systems. As such, free-space optical communication is ideal for mobile platforms, for platforms that require the additional security afforded by the narrow divergence of a laser beam, and for systems that must be deployed in a relatively short time frame. In clear-weather conditions the data rate and utility of free-space optical communication links are primarily limited by fading caused by micro-scale atmospheric temperature variations that create parts-per-million refractive-index fluctuations known as atmospheric turbulence. Typical communication techniques to overcome turbulence-induced fading, such as interleavers with sophisticated codes, lose viability as the data rate is driven higher or the delay requirement is driven lower. This paper, along with its companion [J. H. Shapiro and A. Puryear, “Reciprocity-Enhanced Optical Communication through Atmospheric Turbulence–Part I: Reciprocity Proofs and Far-Field Power Transfer”], present communication systems and techniques that exploit atmospheric reciprocity to overcome turbulence which are viable for high data rate and low delay requirement systems. Part I proves that reciprocity is exhibited under rather general conditions, and derives the optimal power-transfer phase compensation for far-field operation. The Part II paper presents capacity-achieving architectures that exploit reciprocity to overcome the complexity and delay issues that limit state-of-the art free-space optical communications. Further, this paper uses theoretical turbulence models to determine the performance—delay, throughput, and complexity—of the proposed architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.