Abstract
Modulation strategies for multilevel inverters have typically focused on synthesizing a desired set of three phase sinusoidal voltage waveforms using a fixed number of DC voltage levels. This results in the average current injection and hence the net power drawn from the multiple DC bus terminals to be unmatched and time varying. Subsequently, the DC-bus voltages are unregulated, requiring corrective control action to incorporated. In this paper, the principle of reciprocity transposition in introduced as a means for modeling the DC-bus current injection simultaneously as the modulation strategy is formulated. Furthermore, a new sinusoidal pulsewidth-modulation strategy that features constant and controllable current injection at the DC-bus terminals while maintaining output voltage waveform quality is introduced. The proposed strategy is general enough to be applied to converters with an even number of levels and an odd number of levels. Analytical results comparing the performance of the proposed modulator with a conventional multiple carrier modulator are presented for example multilevel converters with four and five levels. Computer simulation results verifying the analytical results are presented for a four-level converter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.