Abstract

The transmission light intensity method is carried out on a classical platform to study the reciprocity of Faraday effect in water-based Fe3O4 ferrofluid and its diluents. Setting the polarization direction of the analyzer at an angle of 45° to that of the polarizer, the switchable DC magnetic field and the alternating magnetic field are imposed to ferrofluid. The ferrofluid film is replaced by magneto-optical glass for contrastive experiments. The results indicate that ferrofluid is different with magneto-optical glass. Even though the direction of magnetic field is reversed, the rotation direction of the polarized light does not change for ferrofluid. The theoretical model of magneto-optical rotation was used to describe the origin of the reciprocity of Faraday effect in ferrofluid and the non-reciprocity in magneto-optical glass. These findings suggest that the magnetic moments of nanoparticles in ferrofluid tend to the same orientation with the magnetic field because of the rotation of particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call