Abstract
Currently, silicon-strain-gauge-based diaphragm pressure sensors use four single-gauge chips for high-output sensitivity. However, the four-single-gauge configuration increases the number of glass frit bonds and the number of aluminum wire bonds, reducing the long-term stability, reliability, and yield of the diaphragm pressure sensor. In this study, a new design of general-purpose silicon strain gauges was developed to improve the sensor output voltage while reducing the number of bonds. The new gauges consist grid patterns with a reciprocating arc of silicon piezoresistors on a thin glass backing. The gauges make handling easier in the bonding process due to the use of thin glass for the gauge backing. The pressure sensors were tested under pressure ranging from 0 to 50 bar at five different temperatures, with a linear output with a typical sensitivity of approximately 16 mV/V/bar and an offset shift of -6 mV to 2 mV. The new approach also opens the possibility to extend arc strain gauges to half-bridge and full-bridge configurations to further reduce the number of glass frit and Al wire bonds in the diaphragm pressure sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.