Abstract
System performance can be significantly improved when both the design of the plant and of the controller are considered concurrently. Control theory can be applied to a broad variety of systems, including those that are physical in nature and many that are not. Despite the generality of control theory, there are many situations in which opportunities are missed for using less conservative control laws and simpler overall implementations. This is due to the use of formulations that do not explicitly reveal the existence of intrinsic information pertaining to the particular domain of application. Such is the case with many physical systems. However, the various constraints associated with physical reality (in the form of principles, laws, etc.) open up several possibilities which can be exploited for system design and control. In this paper, we propose the Reciprocal Variable Feedback principle as a means for facilitating the control of plants with complicated nonlinear dynamics in the presence of parameter and/or structural uncertainty. The RVF principle exploits the effort-flow relationships associated with power interactions in order to assist in the design and control of physical processes. This is accomplished by using appropriate sensors instead of computation based on models (e.g., feedback linearization) and can be implemented within many physical domains. A motion control example is used to provide insight into the nature of the principle. It is expected that in the future, additional principles will be identified and introduced for integrating design with the control of dynamical systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.