Abstract

Ceria and zirconia are very important for their thermal, mechanical, and chemical stability, and their thin films have attracted much attention for applications such as buffer layers for growing electric devices, thermal-shield or optical coatings, corrosion-resistant coatings, oxygen sensors and ionic conductors for fuel cells. To investigate and control the thin film orientation and phase is important to improve those performances. In this study, the reciprocal space maps of CeO2/YSZ/Si(001) were obtained at high temperature by adding a heater to the sample stage. CeO2 and YSZ thin films were epitaxially grown samples. By measuring lattice constants at high temperature, it was conducted that axes of CeO2 and YSZ thin films parallel to the substrate surface showed smaller thermal coefficients than bulk reference and axes perpendicular to the surface showed larger thermal coefficients due to the underlayer and Si substrate. The distortion rate of the lattice of each film was small around at the film deposition temperature. And it could be controled the lattice parameter at the film surface by the film thickness. Therefore, when another thin film, for example, SrTiO3 is deposited on the CeO2 layer, the lattice change of CeO2 with increasing temperature may differ from that before depositing the top layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.