Abstract

The pulsatile secretion of androgen was similar over a 12-hr period in breeding male ferrets implanted with jugular catheters which either achieved an intromission with an estrous female or received no socio-sexual contact. This negative result contrasts with the previous demonstration ( Carroll, Erskine, and Baum, 1987, Endocrinology 121, 1349–1359) of a significant, delayed rise in mean plasma androgen concentrations in breeding male ferrets 5–12 hr after mating. Males used in that previous study had lower initial mean plasma levels of androgen and smaller testis diameters than the present males. We therefore asked whether differences in circulating androgen levels, characteristic of males in different phases of the seasonal breeding cycle, might affect the expression of mating behavior. Castrated males given 0, 0.2, 2.0, or 5.0 mg/kg of testosterone propionate (TP) showed dose-related increases in the expression of different components of sexual behavior, including neck gripping, mounting, and intromitting. Surprisingly, intromissive performance was significantly better in intact breeding males than in castrates given even the highest dosage of TP. These results suggest that ferrets' mating performance may vary with seasonal variations in androgen availability, and that the ability of males to exhibit a postcoital increase in the testicular secretion of androgen may be limited to the beginning or end of the breeding season, when circulating levels of androgen are relatively low. Mating-induced increments in androgen secretion at these times may enhance subsequent reproductive success by facilitating males' intromissive capacity, which is required for the induction of ovulation and optimal sperm transport in female partners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.