Abstract

This study evaluates a possible relationship between reactive oxygen species (ROS) and cyclooxygenase (COX)-2-derived products in conductance and resistance arteries from hypertensive animals. Angiotensin II (Ang II)-infused mice or spontaneously hypertensive rats treated with the NAD(P)H Oxidase inhibitor apocynin, the mitochondrion-targeted SOD2 mimetic Mito-TEMPO, the superoxide dismutase analog tempol, or the COX-2 inhibitor Celecoxib were used. Apocynin, Mito-TEMPO, and Celecoxib treatments prevented Ang II-induced hypertension, the increased vasoconstrictor responses to phenylephrine, and the reduced acetylcholine relaxation. The NOX-2 inhibitor gp91ds-tat, the NOX-1 inhibitor ML171, catalase, and the COX-2 inhibitor NS398 abolished the ex vivo effect of Ang II-enhancing phenylephrine responses. Antioxidant treatments diminished the increased vascular COX-2 expression, prostanoid production, and/or participation of COX-derived contractile prostanoids and thromboxane A(2) receptor (TP) in phenylephrine responses, observed in arteries from hypertensive models. The treatment with the COX-2 inhibitor normalized the increased ROS production (O(2)·(-) and H(2)O(2)), NAD(P)H Oxidase expression (NOX-1, NOX-4, and p22phox) and activity, MnSOD expression, and the participation of ROS in vascular responses in both hypertensive models. Apocynin and Mito-TEMPO also normalized these parameters of oxidative stress. Apocynin, Mito-TEMPO, and Celecoxib improved the diminished nitric oxide (NO) production and the modulation by NO of phenylephrine responses in the Ang II model. This study provides mechanistic evidence of circuitous relationship between COX-2 products and ROS in hypertension. The excess of ROS from NAD(P)H Oxidase and/or mitochondria and the increased vascular COX-2/TP receptor axis act in concert to induce vascular dysfunction and hypertension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.