Abstract

In biological interactions, phenotypic change in interacting organisms induced by their interaction partners causes a substantial shift in some environmental factor of the partners, which may subsequently change their phenotype in response to that modified environmental factor. Few examples of such arms-race-like plastic responses, known as reciprocal phenotypic plasticity, have been identified in predator-prey interactions. We experimentally identified a reciprocal defensive plastic response of a prey species against a predator with a predaceous phenotype using a model system of close predator-prey interaction. Rana pirica tadpoles (the prey species) were reared with larvae of the salamander Hynobius retardatus (the predator species) having either a predaceous or a typical, nonpredaceous phenotype. The H. retardatus larvae with the predaceous phenotype, which is known to be induced by the presence of R. pirica tadpoles, induced a more defensive phenotype in the tadpoles than did larvae with the typical phenotype. The result suggests that the reciprocal phenotypic plasticity of R. pirica tadpoles is in response to a phenotype-specific signal under a close-signal recognition process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.