Abstract

Clinical studies indicate diabetes mellitus type II (DM) doubles the risk that a patient will also develop Alzheimer's disease (AD). DM is caused by insulin resistance and a relative lack of active insulin. AD is characterized by the deposition of amyloid β (Aβ) peptide fibrils. Prior to fibrillating, Aβ forms intermediate, prefibrillar oligomers, which are more cytotoxic than the mature Aβ fibrils. Insulin can also form amyloid fibrils. In vivo studies have revealed that insulin promotes the production of Aβ, and that soluble Aβ competes with insulin for the insulin receptor. Here, we report that monomeric insulin interacted with soluble Aβ and that both molecules reciprocally slowed down the aggregation kinetics of the other. Prefibrillar oligomers of Aβ that eventually formed in the presence of insulin were less cytotoxic than Aβ oligomers formed in the absence of insulin. Mature Aβ fibrils induced fibrillation of soluble insulin, but insulin aggregates did not promote Aβ fibrillation. Our study indicates that direct molecular interactions between insulin and Aβ may contribute to the strong link between DM and AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.