Abstract

We report spin-wave (SW) propagation in a one-dimensional magnonic crystal (MC) explored by all electrical spectroscopy. The MC consists of a periodic array of 255 nm wide permalloy nanowires with a small edge-to-edge separation of 45 nm. Provoking antiparallel alignment of the magnetization of neighboring nanowires, we unexpectedly find reciprocal excitation of Damon-Eshbach type SWs. The characteristics are in contrast to ferromagnetic thin films and controlled via, both, the external magnetic field and magnetic states. The observed reciprocal excitation is a metamaterial property for SWs and attributed to the peculiar magnetic symmetry of the artificially tailored magnetic material. The findings offer great perspectives for nanoscale SW interference devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.