Abstract

Reciprocals and reciprocal square roots are used in several digital signal processing, multimedia, and scientific computing applications. This paper presents high-speed methods for computing reciprocals and reciprocal square roots. These methods use a table lookup, operand modification, and multiplication to obtain an initial approximation. This is followed by a modified Newton-Raphson iteration, which improves the accuracy of the initial approximation. The initial approximation and Newton-Raphson iteration employ specialized hardware to reduce the delay, area, and power dissipation. The application of these methods is illustrated through the design of reciprocal and reciprocal square root units for operands in the IEEE single precision format. These designs are pipelined to produce a new result every clock cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.