Abstract

Epoxyeicosatrienoic acids (EETs) are synthesized from arachidonic acid by CYP/epoxygenase and metabolized by soluble epoxide hydrolase (sEH). Roles of EETs in hypoxia-induced pulmonary hypertension (HPH) remain elusive. The present study aimed to investigate the underlying mechanisms, by which EETs potentiate HPH. Experiments were conducted on sEH knockout (sEH-KO) and wild type (WT) mice after exposure to hypoxia (10% oxygen) for three weeks. In normal/normoxic conditions, WT and sEH-KO mice exhibited comparable pulmonary artery acceleration time (PAAT), ejection time (ET), PAAT/ET ratio, and velocity time integral (VTI), along with similar right ventricular systolic pressure (RVSP). Chronic hypoxia significantly reduced PAAT, ET, and VTI, coincided with an increase in RVSP; these impairments were more severe in sEH-KO than WT mice. Hypoxia elicited downregulation of sEH and upregulation of CYP2C9 accompanied with elevation of CYP-sourced superoxide, leading to enhanced pulmonary EETs in hypoxic mice with significantly higher levels in sEH-KO mice. Isometric tension of isolated pulmonary arteries was recorded. In addition to downregulation of eNOS-induced impairment of vasorelaxation to ACh, HPH mice displayed upregulation of thromboxane A2 (TXA2) receptor, paralleled with enhanced pulmonary vasocontraction to a TXA2 analog (U46619) in an sEH-KO predominant manner. Inhibition of COX-1 or COX-2 significantly prevented the enhancement by ∼50% in both groups of vessels, and the remaining incremental components were eliminated by scavenging of superoxide with Tiron. In conclusion, hypoxia-driven increases in EETs, intensified COXs/TXA2 signaling, great superoxide sourced from activated CYP2C9, and impaired NO bioavailability work in concert, to potentiate HPH development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call