Abstract

Currently, food waste is a global concern, a problem that arises mainly at the consumption level and generates environmental, economic, and social impacts. One way to reduce the food waste problem is to use the food we already have at home. However, this causes another concern, which is what to cook with certain foods. Sometimes we do not know what recipes can be made. Knowing which ingredients can be mixed and how to mix them can be a difficult task for a beginner cook, so selecting the right ingredients for a recipe is essential. Therefore, it is proposed to develop a recipe recommendation system through image recognition of food ingredients. Presently, the system is a web application that recognizes an image given by the user and recommends recipes containing the recognized ingredient. For this, a convolutional neural network model, the ResNet-50, was built to perform image recognition and trained with a dataset that contains about 36 classes of vegetables and fruits. Through this training, the model reached 96% accuracy in classifying the dataset images. The recommendation system uses the label of the recognized ingredient to obtain the recipes, which are searched through the Edamam API.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.