Abstract
The real-time railway traffic management problem consists of selecting appropriate train routes and schedules for minimizing the propagation of delay in case of traffic perturbation. In this paper, we tackle this problem by introducing RECIFE-MILP, a heuristic algorithm based on a mixed-integer linear programming model. RECIFE-MILP uses a model that extends one we previously proposed by including additional elements characterizing railway reality. In addition, it implements performance boosting methods selected among several ones through an algorithm configuration tool. We present a thorough experimental analysis that shows that the performances of RECIFE-MILP are better than the ones of the currently implemented traffic management strategy. RECIFE-MILP often finds the optimal solution to instances within the short computation time available in real-time applications. Moreover, RECIFE-MILP is robust to its configuration if an appropriate selection of the combination of boosting methods is performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.