Abstract
Rechargeable aluminum-ion batteries (AIBs) possess significant advantages of high energy density, safety performance, and abundant natural resources, making them one of the desirable next-generation substitutes for lithium battery systems. However, the poor reversibility, short lifespan, and low capacity of positive materials have limited its practical applications. In comparison with semiconductors, the metallic nickel telluride (NiTe) alloy with enhanced electrical conductivity and fast electron transmission is a more favorable electrode material that could significantly decrease the kinetic barrier during battery operation for energy storage. In this paper, the NiTe nanorods prepared through a simple hydrothermal routine enable an initial reversible capacity of approximately 570 mA h g-1 (under the current density of 200 mA g-1) to be delivered on the basis of the ionic liquid electrolyte, along with the average voltage platform of about 1.30 V. Moreover, the cycling performance could be easily enhanced using a modified separator to prevent the diffusion of soluble intermediate species to the negative electrode side. At a high rate of 500 mA g-1, the NiTe nanorods could retain a specific capacity of about 307 mA h g-1 at the 100th cycle. The results have important implications for the research of transition metal tellurides as positive electrode materials for AIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.