Abstract
Constructing a functional layer on the surface of commercial membrane (as a substrate) to inhibit the formation of biofilms is an efficient strategy to prepare an antibacterial anion exchange membrane (AEM). Herein, a rechargeable multifunctional anti-biological system is reported by utilizing the mussel-inspired L-dopa connection function on commercial AEMs. Cobalt nanoparticles (Co NPs) and N-chloramine compounds are deposited on the AEM surface by a two-step modification procedure. The anti-biofouling abilities of the membranes are qualitatively and quantitatively analyzed by adopting common Gram-negative (E. coli) and Gram-positive (S. aureus & Bacillus) bacteria as model biofouling organisms. The optimized membrane exhibits a high stability concerning the NaCl solution separation performance within 240 min. Meantime, the mechanism of the anti-adhesion is un-veiled at an atomic level and molecular dynamics (MD) simulation are conducted to measure the interaction, adsorption energy and average loading by using lipopolysaccharide (LPS) of E. coli. In view of the superior performance of antibacterial surfaces, it is believed that this work could provide a valuable guideline for the design of membrane materials with resistance to biological contamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.