Abstract

Rechargeable lithium batteries with organic electrode materials are promising energy storage systems with advantages of structural designability, low cost, renewability, and environmental friendliness. Among the reported organic electrode materials, small organic carbonyl compounds are powerful candidates with high theoretical capacities and fast kinetics. However, these compounds are plagued by high solubility in aprotic electrolytes, which is considered as the main issue leading to capacity decay and short cycling life. Herein we review two major methods to solve this problem, including the preparation of small organic carbonyl salts and optimization of the electrolyte. The polarities of organic electrode materials can be enhanced by forming salts. Thus, the dissolution of the organic compounds in aprotic electrolytes with low polarity is depressed. Meanwhile, optimization of the electrolyte with increasing viscosity can also reduce the dissolution. These two strategies provide guidance for future studi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.