Abstract

The development of a rechargeable battery that can produce valuable chemicals in both electricity storage and generation processes holds great promise for increasing the electron economy and economic value. However, this battery has yet to be explored. Herein, we report a biomass flow battery that generates electricity while producing furoic acid, and store electricity while yielding furfuryl alcohol. The battery is composed of a rhodium-copper (Rh1 Cu) single-atom alloy as anode, a cobalt-doped nickel hydroxide (Co0.2 Ni0.8 (OH)2 ) as cathode, and furfural-containing anolyte. In a full battery evaluation, this battery displays an open circuit voltage (OCV) of 1.29 V and a peak power density up to 107 mW cm-2 , surpassing most catalysis-battery hybrid systems. As a proof-of-concept, we demonstrate that this battery produces 1 kg furoic acid with 0.78 kWh electricity output, and yields 0.62 kg furfuryl alcohol when 1 kWh electricity is stored. This work may shed light on the design of rechargeable batteries with value-added functionality such as chemicals production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.