Abstract

ObjectivesThis study aims to investigate the long-term demineralization-inhibition capability of a rechargeable adhesive with nanoparticles of amorphous calcium phosphate (NACP) on dentin in a biofilm-challenged environment. MethodsThe NACP adhesive was immersed in a pH 4 solution to exhaust calcium (Ca) and phosphate (P) ions and then recharged with Ca and P ions. Dentin samples were demineralized underStreptococcus mutans biofilms for 24 h and randomly divided into two groups: (1) dentin control, (2) dentin with recharged NACP adhesives. Each day, all the samples were immersed in brain heart infusion broth with 1% sucrose (BHIS) for 4 h, and then in artificial saliva (AS) for 20 h. This cycle was repeated for 10 days. The pH of BHIS, the Ca and P ions content of the BHIS and AS were measured daily. After 10 days, the lactic acid production and colony-forming units of the biofilms were tested. The changes of remineralization/demineralization were also analyzed. ResultsDentin in the control group showed further demineralization. The recharged NACP adhesive neutralized acids, increasing the pH to above 5, and released large amounts of Ca and P ions each day. The recharged NACP adhesive decreased the production of lactic acid (P < 0.05), inhibited dentin demineralization and sustained the dentin hardness in the biofilm-challenged environment, showing an excellent long-term demineralization-inhibition capability. ConclusionsThe NACP adhesive could continuously inhibit dentin demineralization in a biofilm-challenged environment by recharging with Ca and P ions. SignificanceThe rechargeable NACP adhesive could provide long-term dentin bond protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call