Abstract

Oxygen-18 content and hydrochemistry of the springs issuing from Semmering Massif was intensively monitored with the aim of characterizing the recharge areas and hydrochemical evolution. The δ18O-altitude effect was determined using isotopic and hydrogeological data for small, mainly crystalline reference springs; it was approximated at –0.27 and –0.21‰/100 m respectively for the northern and southern side of the massif. Applying these values the mean recharge altitude of the springs was calculated. For the large-capacity carbonate springs it ranges between 1,100–1,410 m, compatible with the topographic and hydrogeologic frame work of the Mesozoic limestones and dolomites comprised in the Lower Austroalpine feeding the springs. Hydrochemical composition of the carbonate springs is dominated by Ca2+, Mg2+, HCO3 – and SO4 2– ions. With respect to calcite, the springs are nearly saturated, but undersaturated with dolomite (except for some springs that seemed close to saturation). As is typical for carbon dioxide influx from soils in a mountainous region, the mean equilibrium PCO2 is low, within 10–3.0 and 10–2.5 atm (0.1–0.3 vol%). On a long-term scale, the pH and the calculated SIc, SId and equilibrium PCO2 show a strong seasonality, whereas Ca2+, Mg2+ and HCO3 – concentration is almost time invariant. By integrating the results of δ18O and chemical data, altitudinal variability of the chemistry of carbonate groundwater is demonstrated. Reflecting the systematic change of biotic activity and recharge conditions in the catchment areas, a negative co-variation results between the recharge altitude and PCO2 and HCO3 – concentration (HCO3 – is not modified by any source/sink terms, thus rendering the change on the carbonate chemistry). PCO2 and HCO3 – drop by approx. 0.22 log units (atm) and 38.6 mg/l, respectively, for every 100-m gain in recharge altitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.