Abstract

Double-strand breaks pose a major threat to the genome and must be repaired accurately if structural and functional integrity are to be preserved. This is usually achieved via homologous recombination, which enables the ends of a broken DNA molecule to engage an intact duplex and prime synthesis of the DNA needed for repair. In Escherichia coli, repair relies on the RecBCD and RecA proteins, the combined ability of which to initiate recombination and form joint-molecule intermediates is well understood. To shed light on subsequent events, we exploited the I-SceI homing endonuclease of yeast to make breaks at I-SceI cleavage sites engineered into the chromosome. We show that survival depends on RecA and RecBCD, and that subsequent events can proceed via either of two pathways, one dependent on the RuvABC Holliday junction resolvase and the other on RecG helicase. Both pathways rely on PriA, presumably to facilitate DNA replication. We discuss the possibility that classical Holliday junctions may not be essential intermediates in repair and consider alternative pathways for RecG-dependent separation of joint molecules formed by RecA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.