Abstract
Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. Whilst >450 skeletal dysplasias have been reported, 30% are genetically uncharacterized. We report two Irish Traveller families with a previously undescribed lethal skeletal dysplasia characterized by fetal akinesia, shortening of all long bones, multiple contractures, rib anomalies, thoracic dysplasia, pulmonary hypoplasia and protruding abdomen. Single nucleotide polymorphism homozygosity mapping and whole exome sequencing identified a novel homozygous stop-gain mutation in NEK9 (c.1489C>T; p.Arg497*) as the cause of this disorder. NEK9 encodes a never in mitosis gene A-related kinase involved in regulating spindle organization, chromosome alignment, cytokinesis and cell cycle progression. This is the first disorder to be associated with NEK9 in humans. Analysis of NEK9 protein expression and localization in patient fibroblasts showed complete loss of full-length NEK9 (107 kDa). Functional characterization of patient fibroblasts showed a significant reduction in cell proliferation and a delay in cell cycle progression. We also provide evidence to support possible ciliary associations for NEK9. Firstly, patient fibroblasts displayed a significant reduction in cilia number and length. Secondly, we show that the NEK9 orthologue in Caenorhabditis elegans, nekl-1, is almost exclusively expressed in a subset of ciliated cells, a strong indicator of cilia-related functions. In summary, we report the clinical and molecular characterization of a lethal skeletal dysplasia caused by NEK9 mutation and suggest that this disorder may represent a novel ciliopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.