Abstract

A cell culture model of the blood-brain barrier consisting of a coculture of bovine brain capillary endothelial cells (BBCECs) and astrocytes has been used to examine the mechanism of iron transport to the brain. Binding experiments showed that BBCECs express 35,000 high-affinity (concn at 50% receptor saturation = 11.3 +/- 2.1 nM) transferin (Tf) receptors per cell. In contrast to apo-transferrin (apoTf) we observed a specific transport of holo-transferrin (holoTf) across BBCECs. This transport was inhibited completely at low temperature. Moreover, the anti-Tf receptor antibody (OX-26) competitively inhibited holoTf uptake by BBCECs. Pulse-chase experiments demonstrated that only 10% of Tf was recycled to the luminal side of the cells, whereas the majority of Tf was transcytosed to the abluminal side; double-labeling experiments clearly demonstrated that iron crosses BBCECs bound to Tf. No intraendothelial degradation of Tf was observed, suggesting that the intraendothelial pathway through BBCECs bypasses the lysosomal compartment. These results clearly show that the iron-Tf complex is transcytosed across brain capillary endothelial cells by a receptor-mediated pathway without any degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.