Abstract
Cell membrane receptors play a central role in controlling cellular functions, making them the target of drugs for a wide variety of diseases. This report describes how a recently developed method, fluorescence intensity distribution analysis (FIDA), can be used to develop homogeneous, nonradioactive high throughput screening assays for membrane receptors. With FIDA, free ligand and ligand accumulated on receptor-bearing membrane vesicles can be distinguished on the basis of their particle brightness. This allows the concentration of both bound and free ligand to be determined reliably from a single measurement, without any separation. We demonstrate that ligand affinity, receptor expression level, and potency of inhibitors can be determined using the epidermal growth factor and beta(2)-adrenergic receptors as model systems. Highly focused confocal optics enable single-molecule sensitivity, and sample volumes can thus be reduced to 1 microl without affecting the quality of the fluorescence signal. Our results demonstrate that FIDA is an ideal method for membrane receptor assays offering substantial benefits for assay development and high throughput pharmaceutical screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.