Abstract

Simple SummaryDiffuse-type gastric carcinoma (DGC) is an aggressive subtype of gastric carcinoma with an extremely poor prognosis due to frequent peritoneal metastasis and high probability of recurrence. Its pathogenesis is poorly understood, and consequently, no effective molecular targeted therapy is available. The importance of oncogenic receptor tyrosine kinase (RTK) signaling has been recently demonstrated in the malignant progression of DGC. In particular, RTK gene amplification appears to accelerate peritoneal metastasis. In this review, we provide an overview of RTK gene amplification in DGC and the potential of related targeted therapies.Gastric cancer (GC) is a major cause of cancer-related death worldwide. Patients with an aggressive subtype of GC, known as diffuse-type gastric carcinoma (DGC), have extremely poor prognoses. DGC is characterized by rapid infiltrative growth, massive desmoplastic stroma, frequent peritoneal metastasis, and high probability of recurrence. These clinical features and progression patterns of DGC substantially differ from those of other GC subtypes, suggesting the existence of specific oncogenic signals. The importance of gene amplification and the resulting aberrant activation of receptor tyrosine kinase (RTK) signaling in the malignant progression of DGC is becoming apparent. Here, we review the characteristics of RTK gene amplification in DGC and its importance in peritoneal metastasis. These insights may potentially lead to new targeted therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.