Abstract

Glutamatergic synapses of layer 6 corticothalamic (CT) neurons form a major excitatory input onto thalamic relay cells, allowing neocortex to continuously control sensory information processing in thalamic circuits. CT synapses display both short- and long-term forms of use-dependent synaptic enhancement, mediated at least in part by increases in the probability of transmitter release. At some synapses, such increases in release probability are accompanied by a higher degree of multivesicular release (MVR) and larger glutamate transients at individual release sites, resulting in the saturation of postsynaptic receptors. The extent to which MVR and postsynaptic saturation interact and control short-term plasticity at CT synapses is not known. Here we examined two distinct presynaptic forms of short-term enhancement, facilitation and augmentation, at CT synapses contacting relay neurons in the ventrobasal nucleus of the mouse thalamus. We found that, in the presence of the low-affinity antagonist γ-D-glutamylglycine, to relieve postsynaptic DL-α-amino-3-hydroxy-5-methylisox azole-propionic acid (AMPA) receptor saturation, the magnitude of facilitation and augmentation increased. Whereas receptor saturation was prominent for both AMPA and N-methyl-D-aspartate receptors, desensitization of AMPA receptors did not significantly alter short-term plasticity. Our results suggest that at CT synapses the activity-dependent increase in synaptic strength is controlled by postsynaptic receptor saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.