Abstract

Following restricted peripheral damage, reorganization of adult sensory or motor cortex is believed to depend on loss of surround inhibition, which unmasks latent inputs to the deprived cortex. Here I demonstrate that limited damage to auditory receptors causes loss of functional surround inhibition in the cortex, unmasking of latent inputs and significantly altered neural coding. However, these changes do not lead to plasticity of the cortical map, defined by the most sensitive input from the receptor surface to each cortical location. Thus, in sensory cortex, loss of surround inhibition as a consequence of receptor organ damage does not necessarily result in cortical map plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.