Abstract

The Klip River, flowing through South Africa’s most populated urban area—Soweto and Lenasia—is subject to various pollution and anthropogenic influences, including great concentrations of polycyclic aromatic hydrocarbons. The aims were to determine the aryl-hydrocarbon receptor-mediated potencies of the 16 priority polycyclic aromatic hydrocarbons in sediments of the Klip River, using chemical- and bio-analytical assessments of hazard, and to compare these results with international sediment quality guidelines. Sediment samples were collected from nine sites during the dry seasons of 2013 and 2014. Two sets of toxic equivalents were calculated from analytically obtained polycyclic aromatic hydrocarbon concentrations using: (1) 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalency factors and (2) relative potency factors for fish. The fraction of the sediment extracts containing polycyclic aromatic hydrocarbons was assayed with the H4IIE-luc reporter gene bio-assay, and the aryl-hydrocarbon receptor potency expressed as bio-assay equivalents. The bio-assay equivalents and tetrachlorodibenzo-p-dioxin equivalency factors were compared to Canadian sediment quality guidelines and of the three approaches, the bio-assay equivalents and the relative potency factors for fish proved the most protective. Results of this study are proof of the utility of combining biological analysis with instrumental analysis when predicting hazard. Even though there were instances where the bio-assay equivalents were orders of magnitude greater than the tetrachlorodibenzo-p-dioxin equivalency factors, the results still showed similar trends. It was concluded that hazard from aryl-hydrocarbon receptor-mediated potency to adversely affect aquatic organisms in the Klip River was relatively great, which indicated the need for further investigation into possible mitigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.