Abstract

Rabies virus (RABV) of the rhabdoviridae family is a prototype neurotropic virus that causes a fatal disease, and is still a major risk mostly in developing countries. A key step in the RABV infection process is its arrival into the central nervous system (CNS), for which it uses the cellular transport machinery. Neurons are irregular cells with a specialized anatomy, and often extend lengthy axons that may span over a meter long. In infected organisms, RABV virions enter the neuron periphery at the area of a bite and must overcome great distances in order to reach the peripheral neuron's cell body and from there, the CNS. To this end, RABV exploits the retrograde axonal transport machinery, a fast and directed route aimed for trafficking cargo from the neuron periphery to its soma. RABV's neuronal tropism and retrograde propagation, combined with the development of safe, labeled viruses in recent years (Klingen et al., 2008), have rendered it ideal for neural and synaptic tracing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call