Abstract

Antibodies and peptides are often used to home nanoparticles (NPs) to specific cells. Here in this work, we have used recombinant receptor-binding domain of diphtheria toxin (RDT) as a homing molecule for NPs. Diphtheria toxin binds to heparin binding EGF-like growth factor (HB-EGF) through its receptor-binding domain. HB-EGF is often overexpressed as cell surface molecule in various types of cancer. We have prepared monodispersed, spherical PLGA NPs and coated these NPs with RDT. These NPs are characterized by FESEM and FT-IR spectroscopy. Using flow cytometry and fluorescence spectroscopy, we show that coating with RDT increases cellular uptake of PLGA NPs. We further show that RDT-coated nanoparticles are internalized through clathrin-dependent receptor-mediated endocytosis that can be reduced by specific inhibitor. These RDT-coated nanoparticles (RDT-NP) were further used for preferential delivery of Irinotecan, a chemotherapeutic agent, to cells overexpressing HB-EGF. We show that receptor-mediated enhanced uptake of RDT-NPs increases the potency of irinotecan in these cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.