Abstract

The atypical antipsychotic clozapine produces distinctly different regional patterns of c-fos expression in rat forebrain than does the prototypical neuroleptic haloperidol. While haloperidol-induced c-fos expression appears to be mediated by its D2 dopamine receptor antagonist properties, the mechanisms by which clozapine increases c-fos expression remain uncertain. Using a combination of brain lesion, pharmacological and immunohistochemical techniques, the present study sought to determine the receptor mechanisms by which clozapine increases the number of Fos-like immunoreactive neurons in various regions of the forebrain. To test whether serotonergic and/or noradrenergic systems are involved in clozapine-induced c-fos expression, rats received either 5,7-dihydroxytryptamine lesions of the medial forebrain bundle or 6-hydroxydopamine lesions of the dorsal noradrenergic bundle two weeks prior to clozapine (20 mg/kg) injections. Neither type of lesion affected clozapine-induced c-fos expression in the rat forebrain, suggesting that neither serotonergic nor noradrenergic mechanisms are involved in this action of clozapine. In another experiment, the 5-hydroxytryptamine2 receptor antagonist ritanserin (5 mg/kg), either alone or in combination with haloperidol (1 mg/kg), failed to mimic the pattern of c-fos expression produced by clozapine. This suggests that clozapine's antagonist actions at 5-hydroxytryptamine2 receptors cannot explain the unique pattern of regional c-fos expression produced by this compound. To determine whether the blockade of subtypes of the D2 dopamine receptor family may contribute to clozapine's effects, the dopamine receptor agonists quinpirole and 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) were injected 15 min prior to clozapine. Quinpirole produced a small but significant decrease in clozapine-induced c-fos expression in the medial prefrontal cortex, had larger effects in the lateral septum, and blocked clozapine's actions in the nucleus accumbens and major island of Calleja. Pretreatment with 7-OH-DPAT attenuated clozapine-induced c-fos expression in the nucleus accumbens and lateral septum, completely blocked the expression in the major island of Calleja, but was without effect in the medial prefrontal cortex. Given the different affinities of quinpirole and 7-OH-DPAT for D2, D3 and D4 receptors, these data suggest that clozapine-induced increases in c-fos expression in the nucleus accumbens, major island of Cajella and lateral septal nucleus are due to antagonist actions of this antipsychotic at D3 dopamine receptors. They also indicate that while antagonist actions at D4 receptors may contribute, the primary mechanisms by which clozapine increases c-fos expression in the medial prefrontal cortex remain to be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call