Abstract

Receptor-ligand binding analyses have generally used soluble components to measure thermodynamic binding constants. In their biological context, adhesion receptors bind to an immobile ligand and the binding reaction is confined to the cell-substrate contact zone. We have developed a new procedure based on the spinning disk technology to measure the number of receptor-ligand bonds in the contact zone. Application of this methodology to the CX3CR1-fractalkine and the CXCR1-IL-8 receptor-ligand systems demonstrated that the level of binding to an immobilized ligand is reduced by several orders of magnitude in comparison to solution binding. A comparison of the solution binding and contact zone binding constants shows that the effect of ligand immobilization was similar for each system. In contrast, although the CXCR1-IL-8 bond had the higher affinity, the average bond strength was only 10% of that for the CX3CR1 bond. Because fractalkine can be expressed as a cell surface-bound protein, CX3CR1 has been proposed to function as an adhesion receptor. The higher bond strength suggests that the bond architecture has also evolved to serve an adhesion function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.