Abstract
We previously reported that afferent signals of the rat hepatic vagus increased upon intraportal appearance of insulinotropic hormone glucagon-like peptide-1(7-36) amide (GLP-1), but not glucose-dependent insulinotropic polypeptide (GIP). To obtain molecular evidence for the vagal chemoreception of GLP-1, the concept derived from those electrophysiological observations, receptor gene expressions of GLP-1 and GIP in the rat nodose ganglion were examined by means of reverse transcriptase-mediated polymerase chain reaction (RT-PCR) and Northern blot analysis. Gene expression of the GLP-1 receptor was clearly detected by both RT-PCR and Northern blot analysis. In situ hybridization study confirmed that the expression occurs in neuronal cells of the ganglion. As to the GIP receptor, RT-PCR amplified the gene transcript faintly though Northern blot analysis failed to detect any messages. However, semi-quantitative RT-PCR revealed that the ratio of the gene expression level of the GIP receptor to that of the GLP-1 receptor was less than 1:250, indicating that receptor gene expression of GIP is practically negligible in the ganglion. Additionally, an equal level of GLP-1 receptor gene expressions between left- and right-side ganglia was evidenced by semi-quantitative RT-PCR, implying possible extrahepatic occurrence of vagal GLP-1 reception in addition to the reception through the hepatic vagus (originating from the left-side ganglion). The present results offer, for the first time, the molecular basis for the vagal chemoreception of GLP-1 via its specific receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.