Abstract

We have recently documented that the vast majority of patients with glioblastoma multiforme (GBM) over-express a receptor (R) for interleukin 13 (IL13) in situ. We have now evaluated further the degree of relative specificity of the binding of IL13 to GBM when compared with other growth factor receptors. Tumor samples of 11 patients with GBM, 7 various normal brain samples, and several cell lines in culture were examined. Same patient tissue sections were incubated with 125I-labeled: IL13, monoclonal antibody HB21 against human transferrin (Tf) receptor, epidermal growth factor (EGF), and an IL4 antagonist, IL4.Y124D. All 11 GBMs stained specifically, densely, and relatively homogeneously for both IL13R and TfR. Seven GBM specimens showed specific binding for 125I-EGF, but it was less homogeneous when compared with IL13R or TfR. Two of the GBMs studied demonstrated extremely high density of the EGFR. Furthermore, we did not detect significant presence of the IL4R in the studied GBM specimens in situ. All sections of non-malignant brain tissues examined showed avid binding by the TfR with lack of consistent and specific binding of 125I-IL13 or -EGF. Thus, it appears that the GBM-associated IL13R is considerably more specific to GBM that the one for Tf and more frequently and homogeneously expressed than the EGFR. These results render further support for the hIL13R being a new unique candidate for delivery of variety of anti-GBM therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.