Abstract

Allelic exclusion is established in development through a feedback mechanism in which the assembled immunoglobulin (Ig) suppresses further V(D)J rearrangement. But Ig expression sometimes fails to prevent further rearrangement. In autoantibody transgenic mice, reactivity of immature B cells with autoantigen can induce receptor editing, in which allelic exclusion is transiently prevented or reversed through nested light chain gene rearrangement, often resulting in altered B cell receptor specificity. To determine the extent of receptor editing in a normal, non-Ig transgenic immune system, we took advantage of the fact that lambda light chain genes usually rearrange after kappa genes. This allowed us to analyze kappa loci in IgMlambda+ cells to determine how frequently in-frame kappa genes fail to suppress lambda gene rearrangements. To do this, we analyzed recombined VkappaJkappa genes inactivated by subsequent recombining sequence (RS) rearrangement. RS rearrangements delete portions of the kappa locus by a V(D)J recombinase-dependent mechanism, suggesting that they play a role in receptor editing. We show that RS recombination is frequently induced by, and inactivates, functionally rearranged kappa loci, as nearly half (47%) of the RS-inactivated VkappaJkappa joins were in-frame. These findings suggest that receptor editing occurs at a surprisingly high frequency in normal B cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.