Abstract

Systemic side effects of antiinflammatory steroids may be minimized by incorporation of a metabolically labile group which is metabolized to make the steroid inactive upon entry into the systemic circulation (antedrug concept). In continuing efforts to minimize systemic adverse effects of potent antiinflammatory steroids, we have recently synthesized methyl 11β, 17α,21-trihydroxy-3,20-dioxopregna-1,4-diene-6-carboxylate (P6CM), its 21-acetoxys (P6CMa, P6CMb) and 17,21-acetonide (P6CMacet) derivatives. Structure-activity relationships have now been assessed and compared with prednisolone (P) for glucocorticoid receptor affinity ( P IC 50 = 28 nM ), gluconeogenic activity as induction of tyrosine aminotransferase ( EC 50 = 4.4 nM) in H4-II-C3 HTC cells and antiproliferative effects ( P = 48% inhibition of [ 3H]thymidine incorporation at 1 μM). Relative potencies for receptor binding ( P = 1 ) were 0.12, 0.03, 0.004, and 0.0008 for P6CM, P6CMa, P6CMb, and P6CMacet, respectively, and enzyme induction relative potencies were 0.13, 0.05, 0.01, and 0.008, respectively. Antiproliferative effects of all derivatives were also less than that of P. These decreases suggest that addition of the 6-carboxymethyl group to prednisolone results in the general reduction of glucocorticoid activities. Taken together with previously reported results demonstrating retention of topical antiinflammatory activity of these novel steroids, P6CM and its derivatives may represent new locally active antiinflammatory steroids with reduced propensity to cause gluconeogenic and antiproliferative adverse effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.