Abstract

The possible involvement of N-methyl-D-aspartate (NMDA) receptors in mechanisms enabling the maintenance of long-term potentiation (LTP) was investigated in rat hippocampal slices. The action of the specific NMDA receptor antagonists (-)-2-amino-7-phosphonoheptanoic acid (D-APH) and 2-amino-5-phosphonovaleric acid (DL-APV) as well as of the inactive isomer L-APH was tested on orthodromic population excitatory postsynaptic potential (EPSP) and population spike (PS) responses recorded extracellularly from CA1 pyramidal cells. If the active D-isomer of APH (10 microM) or DL-APV (50 microM), but not if L-APH was present during tetanization, both EPSP and spike potentiation were markedly reduced or even blocked for the whole recording period (8 h after tetanization). It is concluded that the NMDA receptor component expressed during tetanization is a necessary step not only for initiation but also for subsequent mechanisms enabling late phases of synaptic LTP. Some remaining potentiation of the population spike may be related to a second, NMDA-independent mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.