Abstract
Glutamate receptors are clustered at the membrane through interactions with intracellular scaffolding proteins and cytoskeletal elements but can also be found in intracellular compartments or dispersed in the membrane. This distribution results from an equilibrium between the different pools of receptors whose dynamic is poorly known. The group I metabotropic glutamate receptor 5 (mGluR5) is concentrated in an annulus around the postsynaptic density but also found in large amounts in the extrasynaptic membrane. To analyze the dynamic of stabilization of mGluR5, we used single-particle tracking, force measurements, and fluorescence recovery to measure the mobility of mGluR5. We found that receptor activation increases receptor diffusion, whereas the scaffolding protein Homer favors confinement of receptor movements within clusters of Homer-mGluR5. However, this stabilization is reversible, because even in the presence of Homer, receptors still enter and exit from clusters at fast rates. Furthermore, clusters themselves are highly dynamic both in their movements and in their composition, which can vary within tens of seconds. Thus, exchange of receptors between dispersed and clustered states is fast and regulated during physiological processes. These properties may explain certain fast changes in receptor composition observed at postsynaptic densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of neuroscience : the official journal of the Society for Neuroscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.