Abstract

The formation of ocular dominance and orientation columns in the mammalian visual cortex is briefly reviewed. Correlation-based models for their development are then discussed, beginning with the models of Von der Malsburg. For the case of semilinear models, model behavior is well understood: correlations determine receptive field structure, intracortical interactions determine projective field structure, and the “knitting together” of the two determines the cortical map. This provides a basis for simple but powerful models of ocular dominance and orientation column formation: ocular dominance columns form through a correlation-based competition between left-eye and right-eye inputs, while orientation columns can form through a competition between ON-center and OFF-center inputs. These models account well for receptive field structure but are not completely adequate to account for the details of cortical map structure. Alternative approaches to map structure, including the self-organizing feature map of Kohonen, are discussed. Finally, theories of the computational function of correlation-based and self-organizing rules are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call