Abstract
This paper describes a milling stability identification approach that simultaneously considers: physics-based models for the tool tip frequency response functions and stability predictions; the binary result from a milling test (automatically labeled as stable or unstable based on frequency content); chatter frequency when an unstable result is obtained; and user risk tolerance. The algorithm applies probabilistic Bayesian machine learning with adaptive, parallelized Markov Chain Monte Carlo sampling to update the probability of stability with each milling test. The result is a robust solution for rapid convergence to optimized milling parameters for maximum metal removal rate using all available information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.